

Benzamides Derived from 1,2-Diaminocyclopropane as Novel Ligands for Human D₂ and D₃ Dopamine Receptors

Donglai Yang, ^a Slaheddine Kefi, ^a Valérie Audinot, ^b Mark-J. Millan ^b and Michel Langlois ^{a,*}

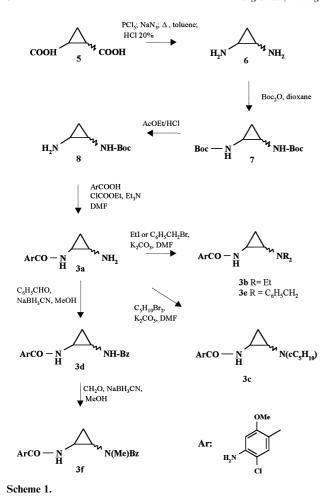
^aCNRS-BIOCIS (URA 1848), Faculté de Pharmacie, 5 rue J. B. Clément, Châtenay-Malabry, 92296, France ^bInstitut de Recherches Servier, Centre de Recherches de Croissy, 125, Chemin de Ronde, 78290 Croissy-sur-Seine, France

Received 1 June 1999; accepted 22 September 1999

Abstract—Benzamides (**3a–f**) derived from 4-amino-5-chloro-2-methoxybenzoic acid and either *cis* or *trans* 1,2-diaminocyclopropane were synthesised and were evaluated in binding assays employing, bovine striatal D_2 receptors, recombinant human hD_2 and hD_3 receptors expressed in CHO cells and rat, cortical 5-HT₃ and striatal 5-HT₄ receptors. The *cis* and *trans* isomers of the derivatives were isolated and characterised. The results demonstrated the superiority of the *cis* conformers over the *trans* conformers in dopamine receptor binding assays (K_i hD_2 =13.4 and 6.9 nM and K_i hD_3 =17.7 and 4.5 nM for the *cis*-**3b** and *cis*-**3f** compounds, respectively; K_i hD_2 =816 and >1000 nM and K_i hD_3 =469 and >1000 nM for the corresponding *trans*-**3b** and *trans*-**3f** compounds respectively). The *cis* compounds are folded: the benzamide group and the basic nitrogen atom were in a *syn* relationship. Compound **3f** can be superimposed with a conformation of the tropane derivative, BRL 25594, having the benzyl group in an axial position to give a suitable fit, indicating that both compounds may have a common binding site in the dopamine receptor. © 2000 Elsevier Science Ltd. All rights reserved.

Introduction

The generic benzamide family has provided a number of potent compounds possessing serotoninergic and dopaminergic activity. 1,2 The parent compound of this family is metoclopramide, 3,4 a gastro-kinetic and anti-emetic drug, which is characterised by its weak affinity and lack of selectivity for D₂, 5-HT₃ and 5-HT₄ receptors.⁵ The weak affinity and lack of selectivity of metoclopramide for these receptors can be imputed to the large number of permissible conformers of the basic chain. To date, several potent and selective metoclopramide derivatives for these three receptors have been described. These structures are characterised by the 4-amino-5-chloro-2methoxy benzamide moiety and a basic nitrogen in a rigid amino framework. Thus, zacopride,6 with a quinuclidine ring and (1) BRL 24682,7 a derivative of N-methylnortropane, are potent 5-HT₃ receptor antagonists and 5-HT₄ receptor agonists, while (2) BRL 25594,8 a potent D₂ receptor antagonist, has a benzyl residue attached to the tropyl nitrogen. The influence of the structure of the basic framework on the potency and


Keywords: D₂; D₃; receptors; benzamides; dopamine receptor antagonists; 1,2-diaminocyclopropane; BRL 25594.

selectivity has been pointed out by several other compounds of this class. 9-12 Thus, hydrophobic parameters, the orientation of the nitrogen lone-pair and the relative positions of the aromatic benzamide and the heterocycle seem to be crucial parameters for recognition by dopaminergic and serotoninergic receptors. 14 In order to improve the understanding of the influence of conformational parameters on the recognition of benzamide derivatives by serotoninergic and dopaminergic receptors, a cyclopropane ring was introduced in the ethyl amino chain of metoclopramide: the obtained conformationally restricted *cis* and *trans* stereoisomers are producing different orientations of the aromatic ring and the basic nitrogen atom. We present here the results concerning the conformationally constrained benzamides 3a-f (Scheme 1).

Chemistry

1,2-Diaminocyclopropane derivatives were prepared from *trans* and *cis* 1,2-cyclopropanediacids which were synthesised according to a previously-described process. Briefly, *cis* and *trans* 1,2-cyclopropanedicar-boxylic acids were prepared by the condensation of methyl acrylate and ethyl chloroacetate which provided

^{*}Corresponding author. E-mail: michel.langlois@cep.u-psud.fra

a mixture of *cis* and *trans* cyclopropane esters. The *cis* and *trans* acids **5** were separated during the work up by the hydrolysis of the esters by KOH in methanol. *Cis* and *trans* 1,2-cyclopropanediamine **6** were obtained from the acids **5** using the classical conditions of the Curtius reaction (Scheme 1). ^{16–18} *t*-Butyloxycarboxylic anhydride was condensed with the amines **6** to give the diprotected compounds *cis* and *trans* **7** which were treated with anhydrous HCl in AcOEt to yield the monoamino derivatives, *cis* and *trans* **8**, respectively.

They were condensed with 4-amino-5-chloro-2-methoxy-

benzoic acid using the mixed anhydride method in DMF

and de-protected according to the previous process into the cis and trans amino derivatives 3a. These compounds were the essential intermediates to prepare the different N,N-disubstituted benzamides 3b-f. Cis and trans 3a were condensed with EtI in the presence of K₂CO₃ in DMF to give the cis and trans diethyl-Nsubstituted derivatives 3b, the strict structural analogues of metoclopramide. The piperidino analogues 3c, which, with the cis stereoisomers, could mimic the putative active conformer of ML 10302¹⁹ (2-(1-piperidinyl)ethyl 4-amino-5-chloro-2-methoxybenzoate), a 5-HT₄ agonist, were synthesised from 3a by the double condensation of 1,5 dibromopentane in the presence of K₂CO₃ in MeCN. Successive reactions of the reductive amination of compounds 3a with benzaldehyde and CH₂O,²⁰ respectively, gave compounds 3f that were structurally related by benzyl substitution to the highly potent D_2 D₃ receptor antagonists, clebopride, BRL 25594 and 4amino-N[2-(N-benzyl-N-methylamino)-2-ethyl]-5-chloro-2-methoxy benzamide 4, a N-benzylated metoclopramide-like compound.

Biological Methods

The affinities of the different compounds were evaluated at bovine striatal D₂ receptors, human D₂ and D₃ receptors and rat brain 5-HT₃ and 5-HT₄ receptors. The binding assay for bovine D₂ receptors was performed using [³H]spiperone.²¹ Human D₂ and D₃ receptor-containing membranes were prepared from CHO cells expressing one or other of the receptors according to the methods described by Sokoloff²²² and competition experiments were carried out with [¹²5I]iodosulpride. 5-HT₃ receptors affinities were determined with [³H]BRL 43694 in rat posterior cortex membranes and affinities for 5-HT₄ receptors were determined by using rat striatal membranes and [³H]GR-113808 according to conditions previously reported by us.¹9

Biological Results and Discussion

The data from the binding assays are reported in Table 1 where their affinity values for bovine D2, hD₂, hD₃, and rat 5-HT₃ and 5-HT₄ receptors are compared to those of the reference compounds: metoclopramide, clebopride,

CI
$$\underset{H_{2}N}{\overset{\circ}{\bigvee}} \underset{H_{2}}{\overset{\circ}{\bigvee}} \underset{H_{2}N}{\overset{\circ}{\bigvee}} \underset{H_{2}N}{\overset{\circ}{\bigvee}} \underset{H_{2}}{\overset{\circ}{\bigvee}} \underset{H_{2}}{\overset{\circ}{\bigvee}} \underset{H_{2}N}{\overset{\circ}{\bigvee}} \underset{H_{2}}{\overset{\circ}{\bigvee}} \underset{H_{2}N}{\overset{\circ}{\bigvee}} \underset{H_{2}N}{\overset{$$

Table 1. Binding profiles of the benzamides 3a-e for bovine D₂, human D₂ and D₃ rat 5-HT₃ and rat 5-HT₄ receptors

Compound	Receptor affinity $(K_i, nM)^e$				
	Bovine D ₂ ^a	Human D ₂ ^b	Human D ₃ b	Rat 5-HT ₃ c	Rat 5-HT ₄ d
Metoclopramide	140 ± 6.5	21 ± 1	27 ± 3	443 ± 45	970
Clebopride	11.9 ± 3.8	0.48 ± 0.03	1.45 ± 0.06	> 1000	104 ± 58
BRL 25594	0.28 ± 0.04	0.05 ± 0.02	0.23 ± 0.02	> 1000	233 ± 60
4	24.3 ± 6.7	1.4 ± 0.05	4.6 ± 0.7	> 1000	867 ± 71
cis-3a	\mathbf{I}^{f}	NT^g	NT	NT	> 1000
trans-3a	I	I	I	NT	> 1000
cis-3b	34.8 ± 1.6	13.4 ± 0.3	17.7 ± 2.8	> 1000	567 ± 29
trans-3b	2400	816 ± 52	> 1000	> 1000	488 ± 32
cis-3c	250 ± 19	NT	NT	> 1000	> 1000
trans-3c	> 1000	NT	NT	> 1000	> 1000
cis-3d	232 ± 20	112 ± 6.9	89.5 ± 7.1	I	> 1000
trans-3d	355 ± 22	118 ± 14	> 1000	I	> 1000
cis-3f	31.3 ± 2.3	6.9 ± 0.5	4.5 ± 0.8	I	> 1000
trans-3f	952 ± 22	469 ± 6	> 1000	> 1000	> 1000
trans-3e	> 1000	> 1000	> 1000	I	> 1000

^a[³H] Spiperone was used as the radioligand and the binding assays were carried out using bovine striatal membranes (25 °C, 30 min); nonspecific binding was determined with butaclamol (10 μM).

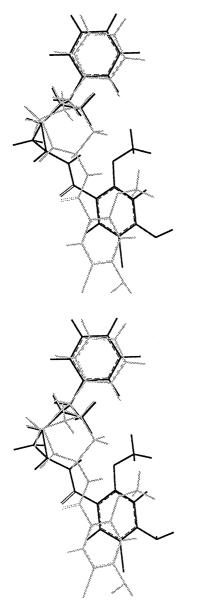
BRL 24682 and compound 4. Metoclopramide was characterised by its moderate affinity for bovine D_2 and rat 5-HT₃ and 5-HT₄ receptors, while values for hD₂ and hD₃ receptors were higher. Clebopride, BRL 25594 and 4 were particularly potent at human hD₂ and hD₃ receptors. These data support the well-known, favourable role of *N*-benzyl substitution on the basic nitrogen atom for improving affinity for dopamine receptors. However, these compounds did not have differential selectivity for hD₂ and hD₃ receptors.

The data obtained for the cyclopropane derivatives demonstrated that affinity for the dopaminergic receptors is dependent on substitution on the nitrogen atom, 3a, 3d, 3e, 3c were inactive. Compounds 3b and 3f, the strict analogues of metoclopramide and 4, respectively, showed clearly that the *trans* isomers were weakly active or inactive at the different receptors tested, while the corresponding cis compounds had nanomolar affinity for dopamine receptors, indicating that these receptors prefer the folded conformation of the amino chain. These results are in contrast to those obtained for the reference compounds, clebopride and BRL 25594 (2) and structurally-related dopaminergic antagonists, 13 which possess an extended shape. In particular, for the nortropane derivatives, the exo derivatives have been shown to be superior to the *endo* derivatives.²³

Comparison of the molecular structure of *cis*-3**f** and BRL 25594 (2) showed a large structural difference between the two molecules when 2 was represented in an extended conformation with the benzyl group in the

equatorial position. However, structural similarity was seen when the benzyl group adopted the axial position. This point was confirmed by conformational analysis of 2 and cis-3f performed with SYBYL software 6.3. It was carried out using the Molecular Dynamic program and the selected minimal energy conformers were minimized. The structural parameters of the minimum energy conformers selected for 2 were similar to those reported previously for the X-ray structure analysis of benzamides derived from tropane.²⁴ The carbonyl function was orientated in the anti-parallel position to the axial bond of the basic nitrogen atom and the benzamide ring was maintained co-planar to the carbonyl group by an intramolecular hydrogen bond. The energy difference between the benzyl axial and equatorial conformers of 2 was small ($\Delta E = 0.31 \text{ kcal/mol}$), demonstrating that the axial conformer can be considered as a putative active conformer in the binding site of D₂ and D₃ receptors. The geometrical parameters of the selected minimum energy conformer of compound cis 3f were similar to the axial conformer of 2. Thus, the distances between the oxygen and the basic nitrogen atoms of compounds 2 and cis 3f were 5.49 and 5.10 A, respectively. These two compounds were fitted (Fig. 1) with regard to the carbonyl group and the basic nitrogen associated with the lone pair, which were considered as the binding points in the receptor site. The RMS value (0.184) showed that the compounds were well superimposed and indicated that the new cis cyclopropane benzamides could bind to the same site as the nortropane derivatives. These data indicate that the benzamide pharmacophore of the nortropane and

 $^{^{}b}[^{125}\Pi]$ Todosulpride was used as the radioligand and the binding assays were carried out using membranes from CHO cells expressing either the human D_2 (short) receptor (hD_2) or the human D_3 receptor (hD_3) (30 min, 30°C), nonspecific binding was determined in the presence of raclopride (10 μ M).


^c[³H]-BRL-43694 was used as he radioligand ant the binding assays were carried out using rat posterior cortex membranes (30 min, 26 °C); non-specific binding was determined with GR 38032F (10 μM).

^d[³H]-GR113808 was used as the radioligand in rat striatal membranes and nonspecific binding was determined with the 5-HT₄ receptor agonist, ML 10302 (10 µM).

^eK_i±standard error of the mean (SEM) values were determined from the Cheng-Prussof equation.

 $^{{}^{}f}I$ = inactive up to 10–5 M.

 $^{^{}g}NT = not tested.$

Figure 1. Stereoview of the superimposition of BRL 25594 (2) with the benzyl group in the axial position and compound *cis*-3f with regard to the oxygen atom of the carbonyl function, the nitrogen basic atom and the lone pair (RMS=0.184).

piperidine derivatives has a folded shape rather than the extended shape which hitherto was thought to be essential. Examination of structures from the X-ray crystallography analysis of benzamides derived from *N*-benzyl pyrrolidine^{25,26} is consistent with the existence of such a folded pharmacophore.

Compounds **3a**—e had no affinity for 5-HT₃ receptors and these results further demonstrate the unfavourable influence of the hydrophobic substituent on the basic nitrogen atom for binding to this receptor. The compounds were inactive or had moderate affinity for 5-HT₄ receptors and these data agree with a number of previous studies on the structure–activity relationships benzamides.¹⁴

Conclusion

The relative affinities for bovine D₂, cloned hD₂, hD₃ and rat 5-HT₃ and rat 5-HT₄ receptors of the ligands reported here underline the importance of steric constraints of the basic nitrogen framework of benzamides derived from 4-amino-5-chloro-2-methoxybenzoic acid for recognition by these receptors. cis-1,2-Diamino cyclopropane derivatives are novel benzamides with nanomolar affinity for hD2 and hD3 receptors. Structural comparison of these compounds with the reference compound, BRL 25594, demonstrated the propensity of tropane and piperidine benzamides to adopt a folded conformation, where the benzyl group is in the axial position, in the receptor binding site. cis-1,2-Diamino cyclopropane constitutes a new basic moiety of the benzamide family which recognises both hD₂ and hD₃ receptors with similar potency.

Experimental

General

Melting points were determined on a Kofler 7841 and were uncorrected. Analytical samples were homogeneous by TLC and afforded spectroscopic results consistent with the assigned structures. ^{1}H NMR spectra were obtained using either a Bruker ARX-400 or AC-200 spectrometer (residual CHCl₃ ($\delta\epsilon_{H}$ 7.26) as internal standard). ^{13}C NMR spectra were recorded in the same solvent stated for the ^{1}H spectra. Elemental analyses were performed on a Perkin–Elmer 240 analyser. TLC was performed on Silica Gel 60 F_{254} (Merck) with detection by UV light. Preparative chromatography was performed under pressure with SDS Chromagel Silica 60, 35–70 mesh. All solvents and reagents were reagent grade unless otherwise noted.

4-Amino-N-[2-(N-benzyl-N-methylamino)ethyl]-5-chloro-**2-methoxy benzamide (4).** To a stirred suspension of 4amino-5-chloro-2-methoxybenzoic acid (1 g, 4.96 mmol) and triethylamine (0.52 g, 5.2 mmol) in DMF (100 mL) cooled to 0 °C, was added dropwise ethyl chloroformate (0.54 g, 5 mmol) under N₂. The mixture was warmed to room temperature and stirred for 1 h. N-benzyl-N-(methyl)ethylene diamine (0.82 g, 5 mmol) was added dropwise and the mixture was stirred overnight. The majority of the solvent was removed in vacuo and the residue was partitioned between EtOAc and an aqueous K₂CO₃ (10%) solution. The organic layers were dried over MgSO₄. The organic solvent was evaporated to give a solid which was recrystallised in EtOAc/diisopropyl ether mixture to give 4: 1.33 g (yield: 64%), mp 130 °C. ¹H NMR (CDCl₃) δ 8.2 (m, 1H, NH), 8.1 (s, 1H, HCCCl), 7.3 (m, 5H, H_{ar}), 6.3 (s, 1H, HCCOCH₃), 4.4 (s, 2H, NH₂), 3.9 (s, 3H, OCH₃), 3.6 (m, 4H, CH₂C₆H₅ and NHC H_2), 2.6 (t, J = 6 Hz, 2H, CONHC H_2 C H_2), 2.3 (s, 3H, NCH₃). ¹³C NMR (CDCl₃) δ 164 (CONH), 158 $(C_{ar}OCH_3)$, 147 $(C_{ar}NH_2)$, 139 $(C_{ar}CH_2)$, 133 $(C_{ar}CH_2)$ HCCl), 129–127 (C_{ar}), 113 (C_{ar}Cl), 111 (C_{ar}CONH), 98 $(C_{ar}HCOCH_3)$, 62 (NCH_2CH_2NH) , 56 (OCH_3) , 55 (NCH₂C₆H₅), 42 (NCH₃), 37 (NCH₂CH₂NH). Anal. calcd $C_{18}H_{22}ClN_3O_2$: C, 62.15; H, 6.37; N, 12.08. Found: C, 61.92; H, 6.4. N, 11.92.

- (±)-(trans)-N,N'-Bis(tert-butyloxycarbonyl)-1,2-cyclo-propanediamine (trans-7). The amine hydrochloride salt trans-6¹⁵ (0.72 g, 5 mmol) were treated with 5 N NaOH (10 mL). Water (10 mL), dioxane (20 mL) and then tert-butyloxycarboxylic anhydride (2.2 g, 10 mmol) were added at 0°C. After 30 min, the solution was extracted several times with chloroform. After washing with brine, the organic phase was dried over MgSO₄, filtered and evaporated. The residue was washed with petroleum ether to give 0.91 g (yield: 67%) of trans-7. ¹H NMR (CDCl₃) δ 5.0 (s, 2H, NH), 3.2 (m, 2H, CH), 1.5 (m, 2H, CH₂), 1.4 (s, 18H, CH₃).
- (\pm)-(cis)-N,N'-Bis(tert-butyloxycarbonyl)-1,2-cyclopropanediamine (cis-7). Following the previous procedure described for trans-7, the amine hydrochloride salt cis-6 (1 g, 6.9 mmol) gave 1.5 g (yield: 77%) of cis-7. ¹H NMR (CDCl₃) δ 5.0 (s, 2H, NH), 2.9 (m, 2H, CH), 1.8 (m, 1H, CH_{2trans}), 1.4 (s, 18H, CH₃), 1.2 (m, 1H, CH_{2cis}).
- (±)-(trans)-N-tert-Butyloxycarbonyl-1,2-cyclopropane-diamine (trans-8). A solution of trans-7 (0.9 g, 3.3 mmol) in ethyl acetate (20 mL) was cooled to 0 °C and treated with a 2.4 N HCl solution (20 mL) in ethyl acetate. The mixture was allowed to warm to room temperature overnight, then filtered and dried to give 0.55 g (80%) of trans-8. ¹H NMR (CDCl₃) δ 6.4 (s, 1H, NH), 3.3 (m, 1H, CHNH), 3.0 (m, 1H, CHNH₂), 1.5 (m, 2H, CH₂), 1.4 (s, 9H, CH₃).
- (\pm)-(*cis*)-*N-tert*-Butyloxycarbonyl-1,2-cyclopropane-diamine (*cis*-8). Following the previous procedure, 1.5 g (5.5 mmol) of the compound *cis*-7 gave 0.9 g (yield: 63%) of *cis*-8. ¹H NMR (CDCl₃) δ 6.4 (s, 1H, NH), 3.3 (m, 1H, C*H*NH), 3.0 (m, 1H, C*H*NH₂), 1.8 (m, 1H, CH₂), 1.4 (s, 18H, CH₃), 1.2 (m, 1H, CH₂).
- (\pm) -(trans)-4-Amino-N-(2-amino-1-cyclopropyl)-5-chloro-2-methoxybenzamide (trans-3a). A solution of triethylamine (0.35 mL, 2.5 mmol) in anhydrous DMF (50 mL) was cooled to 4°C and treated with 4-amino-5-chloro-2methoxybenzoic acid (0.5 g, 2.5 mmol) and ethyl chloroformate (0.24 mL, 2.5 mmol). After 30 min at 4 °C, trans-8 (0.5 g, 2.5 mmol) was added and the solution was allowed to warm to room temperature for 3h. After evaporation and treatment with an aqueous solution of 2.5 N NaOH, the solution was extracted three times with dichloromethane. The organic fractions were dried and then evaporated. Recrystallisation in ethyl acetate gave 0.65 g (yield: 73%) of (\pm)-(trans)-4-amino-5-chloro-2-methoxy-N-(2-[N'-(tert-butyloxycarbonyl)amino]-1cyclopropyl)benzamide. ¹H NMR (CDCl₃) δ 7.7 (s, 1H, HCCCl), 6.4 (m, 2H, NH and HCCOCH₃), 3.9 (s, 3H, OCH₃), 3.2 (m, 1H, CHNHCOPh), 2.9 (m, 1H, CHNHBoc), 1.5 (m, 2H, CH₂), 1.4 (s, 9H, CH₃). 0.65 g (1.8 mmol) of the previous compound were treated according to the process described for trans-8 to give 0.5 g (yield: 95%) of trans-3a after recrystallisation in diethyl ether, mp 92 °C. ¹H NMR (CD₃OD) δ 7.7 (s, 1H, HCCCl), 6.4 (s, 1H, HCCOCH₃), 3.9 (s, 3H, OCH₃), 3.2

- (m, 1H, C*H*NH), 2.9 (m, 1H, C*H*NH2), 1.5 (m, 2H, CH₂). 13 C NMR (CDCl₃) δ 168 (CONH), 159 (C_{ar} OCH₃), 142 (C_{ar} NH₂), 133 (C_{ar} HCCl), 117 (C_{ar} Cl and C_{ar} CONH), 104 (C_{ar} HCOCH₃), 57 (OCH₃), 31 (CHNH and CHNH₂), 13 (CH₂). Anal. calcd for C₁₁H₁₄ClN₃ O₂.H₂O: C, 48.27; H, 5.89; N, 15.35. Found: C, 48.24; H, 5.86; N, 15.43.
- (±)-(*cis*)-4-Amino-*N*-(2-amino-1-cyclopropyl)-5-chloro-2-methoxybenzamide (*cis*-3a). Following the procedure described for *trans*-3a, 4-amino-5-chloro-2-methoxybenzoic acid (0.58 g, 2.9 mmol) and the amine *cis*-8 (0.6 g, 2.9 mmol) gave 0.6 g (yield: 71%) of *cis*-3a after recrystallization in diethyl ether, mp 82 °C. ¹H NMR (CD₃OD) δ 7.7 (s, 1H, *H*CCCl), 6.5 (s, 1H, *H*CCOCH₃), 3.9 (s, 3H, OCH₃), 2.8 (m, 1H, *CH*NH), 2.5 (m, 1H, *CH*NH₂), 1.0 (m, 1H, CH_{2*trans*}), 0.4 (m, 1H, CH_{2*cis*}). ¹³C NMR (CDCl₃) δ 169 (CONH), 160 (C_{ar} OCH₃), 150 (C_{ar} NH2), 133 (C_{ar} HCCl), 111 (C_{ar} Cl and C_{ar} CONH), 99 (C_{ar} HCOCH₃), 57 (OCH₃), 29 (CHNH and CHNH₂), 15 (CH₂). Anal. calcd for C₁₁H₁₄ClN₃O₂: C, 51.67; H, 5.52; N, 16.43. Found: C, 51.61; H, 5.58; N, 16.31.
- (\pm) -(trans)-4-Amino-N-(2-diethylamino-1-cyclopropyl)-**5-chloro-2-methoxybenzamide** (*trans-3b*). A solution of trans-3a (0.73 g, 2.5 mmol) in anhydrous DMF (10 mL) was treated overnight with potassium carbonate (1.35 g, 9.8 mmol) and ethyl iodide (0.81 g, 5 mmol). After filtration and evaporation, water (50 mL) and ethyl acetate (100 mL) were added. The organic phase was extracted by brine, dried over Na₂SO₄, filtered and evaporated. The resulting product was treated with a solution of HCl in ethyl acetate and then recrystallized in isopropanol/toluene mixture to give 0.4 g (yield: 46%) of trans-3b hydrochloride, mp 190°C. ¹H NMR (CD_3OD) δ 7.7 (s, 1H, HCCCl), 6.5 (s, 1H, HCCOCH₃), 3.9 (s, 3H, OCH₃), 3.7 (m, 4H, NCH₂), 3.3 (m, 1H, CHNH), 2.9 (m, 1H, CHN), 1.5 (m, 2H, CH₂), 1.4 (m, 6H, CH₃); ¹³C NMR (CD₃OD) δ 169 (CONH), 160 (C_{ar}OCH₃), 151 (C_{ar}NH₂), 133 (C_{ar}HCCl), 111 (C_{ar}Cl and C_{ar}CONH), 98 (C_{ar}HCOCH₃), 57 (OCH₃), 44 (NCH₂), 29 (CHN), 24 (CHNH), 13 (CH₃), 9 (CH₂). Anal. calcd for C₁₅H₂₂ClN₃O₂.HCl: C, 51.73; H, 6.66; N, 12.07. Found: C, 51.35; H, 6.80; N, 11.84.
- (±)-(*cis*)-4-Amino-*N*-(2-diethylamino-1-cyclopropyl)-5-chloro-2-methoxybenzamide (*cis*-3b). Following the previous procedure, the benzamide *cis*-3a (0.4 g, 1.37 mmol) gave 0.2 g (yield: 42%) of *cis*-3b hydrochloride, mp > 200 °C. ¹H NMR (CD₃OD) δ 7.7 (s, 1H, *H*CCCl), 6.5 (s, 1H, *H*CCOCH3), 3.9 (s, 3H, OCH₃), 3.4–3.2 (m, 5H, NCH₂ and C*H*NH), 2.9 (m, 1H, C*H*N), 1.5–1.0 (m, 8H, CH₂ and CH₃); 13 C NMR (CDCl₃) δ 169 (CONH), 160 (C_{ar} OCH3), 151 (C_{ar} NH₂), 133 (C_{ar} HCCl), 111 (C_{ar} Cl and C_{ar} CONH), 98 (C_{ar} HCOCH₃), 57 (OCH₃), 41 (CHN), 28 (CHNH), 11 (CH₂), 9 (CH₃). Anal. calcd for C_{15} H₂₂ClN₃O₂.HCl.H₂O: C, 49.19; H, 6.88; N, 11.47. Found: C, 48.63; H, 7.10; N, 11.18.
- (\pm)-(trans)-4-Amino-N-[2-(1-piperidine)-1-cyclopropyl]-5-chloro-2-methoxy benzamide (trans-3c). A solution of trans-3a (0.29 g, 1 mmol) in acetonitrile (150 mL) was

treated overnight with potassium carbonate (0.5 g, 3.6 mmol) and 1,5-dibromopentane (0.23 g, 5 mmol). After refluxing for 96 h, the solution was evaporated and then treated with water and extracted several times with dichloromethane. After washing with brine, the organic phase was dried over Na₂SO₄, filtered and evaporated. The resulting product was purified by flash chromatography (CH₂Cl₂/methanol, 95/5), treated with a solution of HCl in ethyl acetate and recrystallized in ethanol/ethyl acetate to give 0.085 g (yield: 22%) of trans-3c hydrochloride, mp > 200°C. ¹H NMR (CD_3OD) δ 7.8 (s, 1H, $\hat{H}CCCl$), 6.5 (s, 1H, HCCOCH₃), 3.9 (s, 3H, OCH₃), 3.2 (m, 4H, NCH₂), 3.1 (m, 1H, CHNHCO), 2.5 (m, 1H, CHN), 1.8 (m, 4H, NCH₂CH₂), 1.6 (m, 2H, NCH₂CH₂CH₂), 1.3 (m, 2H, CH₂); ¹³C NMR (CD₃OD) δ 169 (CONH), 160 (C_{ar} OCH_3), 151 ($C_{ar}NH_2$), 133 ($C_{ar}HCCl$), 111 ($C_{ar}Cl$ and CarCONH), 99 (CarHCOCH3), 57 (OCH3), 55 (NCH2), 47 (NCH), 30 (CHNHCO), 25, 24 and 13 (CH₂). Anal. calcd for C₁₆H₂₂ClN₃O₂.HCl.H₂O: C, 50.79; H, 6.61; N, 11.11. Found: C, 50.76; H, 6.5; N, 11.35.

(±)-(*cis*)-4-Amino-*N*-[2-(1-piperidine)-1-cyclopropyl]-5-chloro-2-methoxy benzamide (*cis*-3c). Following the procedure described for *trans*-3c, *cis*-3a (0.2 g, 0.54 mmol) gave 0.12 g (yield: 53%) of *cis*-3c 2-methoxy-benzamide which was isolated as oxalate (MeOH/diethyl ether). ¹H NMR (CDCl₃) δ 7.8 (s, 1H, *H*CCCl), 6.5 (s, 1H, *H*CCOCH₃), 3.9 (s, 3H, OCH₃), 3.2 (m, 4H, NCH₂), 3.1 (m, 1H, *CH*NHCO), 2.8 (m, 1H, *CH*N), 1.8 (m, 4H, NCH₂ C*H*₂), 1.7 (m, 2H, NCH₂CH₂C*H*₂), 1.3 (m, 2H, CH₂); ¹³C NMR (CD₃OD) δ 169 (CONH), 160 (C_{ar} OCH₃), 151 (C_{ar} NH₂), 133 (C_{ar} HCCl), 111 (C_{ar} Cl and C_{ar} CONH), 98 (C_{ar} HCOCH₃), 57 (OCH₃), 56 (NCH₂), 43 (NCH), 29 (CHNHCO), 24, 23 and 10 (CH₂). Anal. calcd for C₁₆H₂₂ClN₃O₂.2C₂H₂O₄: C, 47.66; H, 5.16; N, 8.34. Found: C, 48.01; H, 4.85; N, 8.12.

 (\pm) -(trans)-4-Amino-N-(2-benzylamino-1-cyclopropyl)-**5-chloro-2-methoxybenzamide** (*trans-3d*). Benzaldehyde (0.48 g, 4.5 mmol) in methanol (10 mL) was added dropwise to a solution of trans-3a (0.72 g, 2.5 mmol) in methanol (40 mL) at 0 °C. After 15 min, sodium cyanoborohydride (0.47 g, 7.5 mmol) were added and the solution was allowed to warm to room temperature for 1 h with a limited addition of acetic acid to keep the pH at 7. After evaporation, the solution was extracted with water and then diethyl ether. The organic phase was extracted with brine, dried over Na₂SO₄, filtered and then evaporated. Purification of the residue by flash chromatography (CH₂Cl₂/methanol/NH₄OH, 90:9:1) gave 0.4 g (yield: 46%) of *trans*-3d, mp 130 °C. ¹H NMR (CDCl₃) δ 8.1 (s, 1H, HCCCl), 7.6 (m, 1H, NH), 7.3 (m, 5H, H_{ar}), 6.3 (s, 1H, HCCOCH₃), 4.6 (m, 2H, NH₂), 3.9 (s, 2H, CH₂NH), 3.8 (s, 3H, OCH₃), 2.8 (m, 1H, CHNHCO), 2.5 (m, 1H, NH), 2.2 (m, 1H, CHNHCH₂), 1.0 and 0.7 (m, 2H, CH₂); ¹³C NMR (CDCl₃) δ 166 (CONH), 157 (C_{ar}OCH₃), 147 (C_{ar}NH₂), 140 (C_{ar}CH₂), 133 (C_{ar}HCCl), 128 (C_{ar}), 111 (C_{ar}Cl and C_{ar}CONH), 98 (C_{ar}HCOCH₃), 56 (OCH₃), 53 (NHCH₂Ph), 38 (CHNHCH₂), 31 (CHNHCO), 15 (CH₂). Anal. calcd for C₁₈H₂₀ClN₃O₂.1/2H₂O: C, 60.93; H, 5.97; N, 11.84. Found: C, 61.03; H, 6.04; N, 11.86.

(±)-(*cis*)-4-Amino-*N*-(2-benzylamino-1-cyclopropyl)-5-chloro-2-methoxybenzamide (*cis*-3d). Following the procedure described for *trans*-3d, benzamide *cis*-3a (0.6 g, 2 mmol) gave 0.4 g (yield: 56%) of *cis*-3d, mp 140 °C. ¹H NMR (CDCl₃) δ 8.2 (m, 1H, NH), 8.1 (s, 1H, *H*CCCl), 7.3 (m, 5H, Har), 6.3 (s, 1H, *H*CCOCH₃), 4.4 (m, 2H, NH₂), 3.9 (s, 2H, CH₂NH), 3.8 (s, 3H, OCH₃), 3.3 (m, 1H, C*H*NHCO), 2.4 (m, 1H, C*H*NHCH₂), 1.0 (m, 1H, CH_{2*trans*}), 0.4 (m, 1H, CH_{2*cis*}). Anal. calcd for C₁₈H₂₀ ClN₃O₂.1/2H₂O: C, 60.93; H, 5.97; N, 11.84. Found: C, 60.90; H, 5.95; N, 11.75.

 (\pm) -(trans)-4-Amino-5-chloro-2-methoxy-N- $\{2$ -[N',N'-bis-(phenylmethyl)aminol-1-cyclopropyl}benzamide 3e). A solution of trans-3a (0.5 g, 1.7 mmol) in DMF (5 mL) was treated overnight with potassium carbonate (0.3 g, 2.16 mmol), benzyl chloride (0.25 g, 2 mmol) and potassium iodide (0.01 g). After refluxing for 96 h, the solution was evaporated and then treated with water and extracted with ethyl acetate. After washing with brine, the organic phase was dried over MgSO₄, filtered and evaporated to give 0.44 g (yield: 59%) of trans-3e, mp 154°C. ¹H NMR (CDCl₃) δ 8.1 (s, 1H, HCCCl), 7.6 (m, 1H, NH), 7.3 (m, 10H, H_{ar}), 6.3 (s, 1H, HCCOCH₃), 4.4 (m, 2H, NH₂), 3.8 (s, 3H, OCH₃), $3.7,(4H, CH_2N), 2.8 (m, 1H, CHNH), 2.0 (m, 1H,$ CHN), 1.0 and 0.7 (m, 2H, CH₂). Anal. calcd for C₂₅H₂₆ClN₃O₂: C, 68.12; H, 6.19; N, 9.41. Found: C, 68.5; H, 6.01; N, 9.64.

(±)-(*trans*)-4-Amino-*N*-[2-(*N*-benzyl-*N*-methylamino)-1-cyclopropyl]-5-chloro-2-methoxybenzamide (*trans*-3f). Following the procedure described for 3d, benzamide *trans*-3d (0.4 g, 2 mmol) and 0.15 mL (2 mmol) of formaldehyde (37% in methanol) gave 0.2 g (yield: 48%) of *trans*-3f, mp 137 °C. 1 H NMR (CDCl₃) δ 8.1 (s, 1H, *H*CCCl), 7.6 (m, 1H, NH), 7.3 (m, 5H, H_{ar}), 6.3 (s, 1H, *H*CCOCH₃), 4.5 (m, 2H, NH₂), 4.0–3.6 (m, 2H, CH₂N), 3.8 (s, 3H, OCH₃), 2.9 (m, 1H, *CH*NH), 2.3 (s, 3H, NCH₃), 1.9 (m, 1H, CHN), 1.0 and 0.8 (m, 2H, CH₂). Anal. calcd for C₁₉H₂₂ClN₃O₂: C, 63.42; H, 6.16; N, 11.68. Found: C, 63.75; H, 6.33; N, 11.51.

(±)-(*cis*)-4-Amino-*N*-[2-(*N*-benzyl-*N*-methylamino)-1-cyclopropyl]-5-chloro-2-methoxybenzamide (*cis*-3f). Following the procedure described for 3d, benzamide *cis*-3d (0.2 g, 1 mmol) and 0.1 mL (1.5 mmol) of formaldehyde (37% in methanol) gave 0.08 g (yield: 39%) of *cis*-3f by recrystallization in diethyl ether, mp 157 °C. 1 H NMR (CDCl₃) δ 8.2 (m, 1H, NH), 8.1 (s, 1H, *H*CCCl), 7.3 (m, 5H, H_{ar}), 6.2 (s, 1H, *H*CCOCH₃), 4.4 (m, 2H, NH₂), 3.9 (m, 2H, CH₂N), 3.6 (s, 3H, OCH₃), 3.4 (m, 1H, C*H*NH), 2.2 (s, 3H, NCH₃), 2.0 (m, 1H, CHN), 1.0 (m, 1H, CH_{2*trans*}), 0.4 (m, 1H, CH_{2*cis*}). Anal. calcd for C₁₉H₂₂ClN₃O₂: C, 63.42; H, 6.16; N, 11.68. Found: C, 63.75; H, 6.33; N, 11.51.

Binding assays

Human dopamine D₂ and D₃ receptors. Chinese hamster ovary (CHO) cells expressing human dopamine D_3 (hD₃) or D_2 (short) receptors (hD₂) were prepared as described.²² Binding assays was carried out by incubating

 $10\,\mu g$ of membrane protein with [125 I]iodosulpride (2000 Ci/mmol, Amersham, 0.1 nM for hD $_2$ and 0.2 nM for hD $_3$) and 7 concentrations of competing ligands in triplicate (final volume 0.5 mL) in a buffer containing Tris–HCl 50 mM (pH 7.5), NaCl 120 mM, KCl 5 mM, CaCl $_2$ 2 mM, MgCl $_2$ 5 mM, bovine serum albumin (0.2% w/v) and ascorbic acid (0.1% w/v) for 30 min at 30°C. Nonspecific binding was defined using $10\,\mu M$ raclopride in triplicate.

Bovine D₂ receptor. Frozen striata from female bovine brains (Cellubio, France) were used in all studies and were stored at $-80\,^{\circ}$ C prior to use. The tissue was dissected and homogenised in 40 volumes of buffer solution (ice-cold Tris, 50 mM, pH 7.4 at 23 °C) with a Polytron. The homogenate was centrifuged at 3000 g for 5 min. The supernatant was then homogenised in an equal volume of buffer and centrifuged at 48,000 g for 15 min. The pellet was resuspended and centrifuged again at 48,000 g. The same volume of buffer solution was added, the pellet was homogenised and the solution was incubated for 10 min at 37 °C and centrifuged. The final pellet was resuspended in 5 volumes of cold buffer solution (50 mM Tris, 120 mM NaCl, 5 mM KCl, 2 mM CaCl₂, 1 mM MgCl₂, 0.1% ascorbic acid, pH 7.4 at 23 °C). Binding assays were performed in glass tubes in a final volume of 0.5 ml with 100 µL of membrane corresponding to 0.5 mg of protein. Seven concentrations of each drug in triplicate were used to inhibit the binding of 0.9 nM [³H] spiperone (32.4 Ci/mmol, NEN Research Products) in the presence of ketanserin (100 nM) to block 5-HT₂ receptors and incubated for 30 min at 23 °C. Nonspecific binding was determined by the addition of 10 µM butaclamol in duplicate. Total binding was defined in quadruplicate.

5-HT₃ and 5-HT₄ receptors. Binding assays were performed according to the methods previously described.¹⁹

References

- 1. Briejer, M. R.; Akkermans, L. M. A.; Schuurkes, J. A. *J. Pharmacol. Rev.* **1995**, *47*, 631.
- 2. de Paulis, T. In *VIIIth International Symposium on Medicinal Chemistry, Proceeding I*; Dahlborn, R.; Nilsson, J. L. G., Eds.; 1985; pp 2–28.

- 3. Pinder, R. M.; Brodgen, R. N.; Sawyer, P. R.; Speight, T. M.; Avery, G. *Drugs* **1976**, *12*, 81.
- 4. Justin-Besancon, L.; Laville, C.; Thominet, M. C. R. Acad. Sci. Paris 1964, 256, 4384.
- 5. Yang, D.; Brémont, B.; Shen, S.; Kefi, S.; Langlois, M. Eur. J. Med. Chem. 1996, 31, 231.
- 6. Imbert, T.; Dorme, N.; Langlois, M. European Patent 0099789 A1.
- 7. Fake, C. S.; King, F. D.; Sanger, G. J. Br. J. Pharmacol. 1987, 91, 335P.
- 8. Hadley, M. S. In *Chemical Regulation of Biological Mechanisms*; Creighton, A. M.; Turner, S., Eds.; Royal Society of Chemistry: London, 1982; pp 140–153.
- 9. King, F. D.; Hadley, M. S.; McClelland, C. M. J. Med. Chem. 1988, 31, 1708.
- 10. Brown, F.; Campbell, W.; Clark, M. S. G.; Graves, D. S.; Hadley, M. S.; Hatcher, J.; Mitchell, P.; Needham, P.; Riley, G.; Semple, J. *Psychopharmacology* **1988**, *94*, 350.
- 11. Langlois, M.; Yang, D.; Brémont, B.; Shen, S. *Bioorg. Med. Chem. Lett.* **1995**, *5*, 795.
- 12. Flynn, D. L.; Zabrowski, D. L.; Becker, D. P.; Nosal, R.; Villamil, C. I.; Gullikson, G. W.; Moummi, C.; Yang, D. C. *J. Med. Chem.* **1992**, *35*, 1486.
- 13. Collin, S.; El Tayar, N.; Van de Waterbeemd, H.; Moureau, F.; Vercauteren, D. P.; Durant, F.; Langlois, M.; Testa, B. *Eur. J. Med. Chem.* **1989**, *24*, 163.
- 14. Gaster, L. M.; King, F. D. Med. Res. Rev. 1997, 17, 163.
- 15. Paine, G. B. J. Org. Chem. 1967, 32, 3351.
- 16. Witiak, D. T.; Lee, H. J.; Hart, R. W.; Gibson, R. E. J. *Med. Chem.* **1977**, *20*, 630.
- 17. Witiak, D. T.; Lee, H. J.; Goldman, H. D.; Zwilling, B. S. J. Med. Chem. 1978, 21, 1194.
- 18. Majchrzak, M. W.; Kotelko, A.; Guryn, R. Synth. Comm. 1981, 11, 493.
- 19. Yang, D.; Soulier, J-L.; Sicsic, S.; Mathé-Allainmat, M.; Brémont, B.; Croci, T.; Cardamone, R.; Aureggi, G.; Langlois, M. *J. Med. Chem.* **1997**, *40*, 608.
- 20. Borch, R. F.; Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.
- 21. Creese, I.; Hess E. J. In *Receptor Binding in Drug Research*; O'Brien, R. A., Ed.; New York: Marcel Dekker, 1986; pp 123–149
- 22. Sokoloff, P.; Andrieux, M.; Besançon, R.; Pilon, C.; Martres, M.-P.; Giros, B.; Schwartz, J.-C. Eur. J. Pharmacol. 1992, 225, 331.
- 23. Dostert, Ph.; Imbert, T.; Langlois, M.; Bucher, B.; Mocquet, G. Eur. J. Med. 1984, 19, 105.
- 24. Durant F.; De Beys, V.; Collin, S.; Evrard, G. *Bull. Soc. Chim.* **1986**, 497.
- 25. Petterson, I.; Liljefors, T. J. Med. Chem. 1992, 35, 2355.
- 26. Furuya, T.; Iwanami, S.; Takenaka, A.; Sasada, Y. Bull. Chem. Soc. Jpn. 1982, 55, 2321.